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Abstract

Image-text retrieval of natural scenes has been a popu-

lar research topic. Since image and text are heterogeneous

cross-modal data, one of the key challenges is how to learn

comprehensive yet unified representations to express the

multi-modal data. A natural scene image mainly involves

two kinds of visual concepts, objects and their relationships,

which are equally essential to image-text retrieval. There-

fore, a good representation should account for both of them.

In the light of recent success of scene graph in many CV and

NLP tasks for describing complex natural scenes, we pro-

pose to represent image and text with two kinds of scene

graphs: visual scene graph (VSG) and textual scene graph

(TSG), each of which is exploited to jointly characterize

objects and relationships in the corresponding modality.

The image-text retrieval task is then naturally formulated

as cross-modal scene graph matching. Specifically, we de-

sign two particular scene graph encoders in our model for

VSG and TSG, which can refine the representation of each

node on the graph by aggregating neighborhood informa-

tion. As a result, both object-level and relationship-level

cross-modal features can be obtained, which favorably en-

ables us to evaluate the similarity of image and text in the

two levels in a more plausible way. We achieve state-of-

the-art results on Flickr30k and MS COCO, which verifies

the advantages of our graph matching based approach for

image-text retrieval.

1. Introduction

Visual media and natural language are the two most

prevalent information coming in different modalities in our

daily life. To achieve artificial intelligence on computers,

it is essential to enable computers to understand, match,

and transform such cross-modal data. Image-text cross-

modal retrieval is thus one of the challenging research top-

ics, where given a query of one modality (an image or a text

sentence), it aims to retrieve the most similar samples from

the database in another modality. The key challenge here is

how to match the cross-modal data by understanding their

contents and measuring their semantic similarity, especially

when there are multiple objects in the cross-modal data.

To address this task, many approaches have been pro-

posed. As shown in the top of Fig.1, early approaches

[14, 3, 27, 28, 38] use global representations to express the

whole image and sentence, which ignore the local details.

Such approaches work well on simple cross-modal retrieval

scenario that contains only a single object, but are not satis-

factory for more realistic cases that involve complex natural

scenes. Recent studies [12, 11, 7, 8, 17] pay attention to

local detailed matching by detecting objects in both images

and text, and have gained certain improvements over previ-

ous works, which is described in the middle of Fig.1.

However, a natural scene contains not only several ob-

jects but also their relationships [10], which are equally im-

portant to image-text retrieval. For example, three images in

the left of Fig.1 contain similar objects. The “dog” in img1
can distinguish this image from the other two, while img2
and img3 contain the same objects, including “woman”,

“horse”, “beach” and “dress”. To discriminate such two

images, the relationships play an essential role. Clearly, the

“woman” in img2 is “standing next to” the horse while the

“woman” in img3 is ”riding on” the horse. Similarly, there

are also semantic relationships between textual objects in a

sentence after syntactic analysis, such as “woman-wears-

dress”, “woman-rides-on-horse” in the text query in Fig.1.

With more recent research topics focusing on the objects

and relationships in the image scene, scene graphs [10] are

proposed to model the objects and relationships formally

and have quickly become a powerful tool used in high-level

semantic understanding tasks [18, 35, 9, 29, 34]. A scene

graph consists of many nodes and edges, in which each

node represents an object, and each edge indicates the re-

lationship between the two nodes it connects. To represent
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Figure 1. Three different image-text retrieval frameworks. The framework on the top uses global representations to present images and text

for matching. The middle one extracts objects in the image and text for detailed matching. The bottom one (ours) captures both objects

and their relationships from the image and text with two graphs for two levels matching.

the image and text comprehensively in the image-text re-

trieval task, we organize the objects and the relationships

into scene graphs for both modalities, as illustrated in the

bottom of Fig.1. We introduce a visual scene graph (VSG)

and a textual scene graph (TSG) to represent images and

text, respectively, converting the conventional image-text

retrieval problem to the matching of two scene graphs.

To be specific, we extract objects and relationships from

the image and text to form the VSG and TSG, and design

a so-called Scene Graph Matching (SGM) model, where

two tailored graph encoders encode the VSG and TSG into

the visual feature graph and the textual feature graph. The

VSG encoder is a Multi-modal Graph Convolutional Net-

work (MGCN), which enhances the representations of each

node on the VSG by aggregating useful information from

other nodes and updates the object and relationship features

in different manners. The TSG encoder contains two dif-

ferent bi-GRUs aiming to encode the object and relation-

ship features, respectively. After that, both object-level and

relationship-level features are learned in each graph, and the

two feature graphs corresponding to two modalities can be

finally matched at two levels in a more plausible way.

To evaluate the effectiveness of our approach, we con-

duct image-text retrieval experiments on two challenging

datasets, Flickr30k [36] and MS COCO [19]. The results

show that the performance of our approach significantly

outperforms state-of-the-art methods and validates the im-

portance of relationships for image-text retrieval.

2. Related Works

Image-Text Retrieval. Image-text retrieval task has be-

come a popular research topic in recent years. Several ex-

cellent works [14, 3, 24, 27, 12, 11, 7, 8, 17, 15, 38, 5] are

introduced to address this task, which can be divided into

two groups: i) global representation based methods and ii)

local representation based methods.

Global representation based methods [3, 27, 28, 38, 4,

14] usually consist of an image encoder (e.g. CNN) and a

sentence encoder (e.g. RNN) to extract a global feature of

the image and sentence, respectively. Then, a metric is de-

vised to measure the similarity of a couple of features in

different modalities. Frome et al. [4] proposed a deep vi-

sual semantic embedding model that uses CNN to extract

the visual representations from the full image and Skip-

Gram [20] to obtain the representation of the semantic la-

bels. Similarly, Kiros et al. [14] use LSTM to encode the

full sentence and the triplet loss to make the matched image-

sentence pair closer than the unmatched pairs in the em-

bedding space. Wehrmann et al. [31] designed an efficient

character-level inception module which encodes textual fea-

tures by convolving raw characters in the sentence. Faghri

et al. [3] produce significant gains in retrieval performance

by introducing hard negatives mining into triplet loss.

To be more detailed, local representation based meth-

ods [12, 11, 7, 8, 17] that focus on the local alignment be-

tween images and sentences, have been developed recently.

Karpathy et al. [12] extract objects from images, and match

these visual objects with words in the sentences. To im-

prove such an approach, Lee et al. [17] attend more impor-

tant fragments (words or regions) with an attention network.

Huang et al. [8] propose that semantic concepts, as well as

the order of semantic concepts, are essential for image-text

matching. To solve the issue of embedding polysemous in-

stances, Song and Soleymani [25] extract K embeddings of
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Figure 2. The architecture of our method. The image and sentence are parsed into a VSG and TSG by two graph generators. Then two

encoders encode them into feature graphs, which are matched at object and relationship levels at last. Note that VSG and TSG have two

types of nodes and TSG contains two kinds of edges that are explained in the legend.

each image rather than injective embedding.

However, some of the above methods lose sight of the

relationships between objects in multi-modal data, which is

also the key point for image-text retrieval. Though some

of them [11, 7, 8, 17] use RNNs to embed words with con-

text, it still does not explicitly reveal the semantic relation-

ships between textual objects. In our approach, both vi-

sual and textual objects with their relationships are explic-

itly captured by scene graphs. Thus, the cross-modal data

can match in two levels, which is more plausible.

Scene Graph. Scene graph was first proposed by [10]

for image retrieval, which describes objects, their attributes,

and relationships in images with a graph. With recent break-

throughs in scene graph generation [37, 18, 33, 30, 30],

many high-level visual semantic tasks are developed, such

as VQA [26], image captioning [34, 35, 18], and grounding

referring expressions [29]. Most of these methods benefit

from the use of scene graphs to present images. On the other

hand, several methods [1, 30, 22] are proposed to parse the

sentence into a scene graph, which is applied to some cross-

modal tasks [34]. In recent years, there are attempts to use

graph structures to represent both visual and textual data,

such as [26] that employs graphs to represent image and

text questions for VQA. Distinctive from our method, their

graphs, which contain no semantic relationships, are not the

so-called scene graph.

3. Method

Given a query in one modality (a sentence query or an

image query), the goal of the image-text cross-modal re-

trieval task is to find the most similar sample from the

database in another modality. Therefore, our Scene Graph

Matching (SGM) model aims to evaluate the similarity of

the image-text pairs by dissecting the input image and text

sentence into scene graphs. The framework of SGM is illus-

trated in Fig.2, which consists of two branches of networks.

In the visual branch, the input image is represented into a

visual scene graph (VSG) and then encoded into the visual

feature graph (VFG). Simultaneously, the sentence is parsed

into a textual scene graph (TSG) and then encoded into the

textual feature graph (TFG) in the textual branch. Finally,

the model collects object features and relationship features

from the VFG and TFG and calculates the similarity score

at the object-level and relationship-level, respectively. The

architectures of the submodules of SGM will be detailed in

the following subsections.

3.1. Visual Feature Embedding

3.1.1 Visual Scene Graph Generation

Given a raw image, the visual scene graph is generated

by an off-the-shelf scene graph generation method, such as

MSDN [18] and Neural Motifs [37]. We represent a visual

scene graph as G = {V,E}, where V is the node-set, and

E is the edge-set. There are two types of nodes in our vi-

sual scene graph, as shown in Fig.2. The pink rectangles

denote object nodes, each of which corresponds to a re-

gion of the image. The ellipses in light blue are relationship

nodes, each of which connects two object nodes by directed

edges. Additionally, each node has a category label, such as

“man”,“hold”.

Concretely, suppose there are No object nodes and Nr

relationship nodes in a VSG. The object nodes set can be

represented as O = {oi|i = 1, 2, . . . , No}. The set of rela-
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Figure 3. The framework of the VSG encoder. The corresponding

image region of each node is embedded into a feature vector by the

visual feature extractor. Then the visual feature and the word label

of each node are fused by the multi-modal fusion layer. Finally,

the graph is encoded by a GCN, and yield the visual feature graph

as output.

tionship nodes is R = {rij} ⊆ O × O, where |R| = Nr,

and rij is the relationship of oi and oj . The label of oi and

rij can be represented by one-hot vectors, loi and lrij .

3.1.2 Visual Scene Graph Encoder

After the generation of visual scene graph, we design a

Multi-modal Graph Convolutional Network (MGCN) to

learn good representations on VSG, which includes a pre-

trained visual feature extractor, a label embedding layer, a

multi-modal fusion layer, and a graph convolutional net-

work, shown in Fig.3.

Visual Feature Extractor. The pre-trained visual fea-

ture extractor is used for encoding image regions into fea-

ture vectors, which can be pre-trained CNN networks or ob-

ject detectors (e.g. Faster-RCNN [21]). Each node in the

VSG will be encoded into a d1-dimension visual feature

vector by the extractor. For object node oi, its visual fea-

ture vector voi is extracted from its corresponding image

region. For relationship node rij , its visual feature vector

vrij is extracted from the union image region of oi and oj .

Label Embedding Layer. Each node has a word label

predicted by the visual scene graph generator, which can

provide the auxiliary semantic information. The label em-

bedding layer is built to embed the word label of each node

into a feature vector. Given the one-hot vectors loi and lrij ,

the embedded label features eoi and erij are computed as

eoi = Woloi and erij = Wrlrij , where Wo ∈ Rd2×Co and

Wr ∈ Rd2×Cr are trainable parameters and initialized by

word2vec (we use d2=300). Co is the category number of

objects and Cr is the category number of relationships.

Multi-modal Fusion Layer. After obtaining the visual

feature and label feature of each node, it is necessary to

fuse them into a unified representation. Thus, a multi-modal

fused feature graph is generated. Specifically, the visual

feature and label feature are concatenated, then fused as

uoi = tanh(Wu[voi , eoi ]), (1)

urij = tanh(Wu[vrij , erij ]), (2)

where Wu ∈ Rd1×(d1+d2) is the trainable parameter of the

fusion layer.

Graph Convolutional Network. GCNs [32] are convo-

lutional neural networks that can operate on graphs of any

structure, which is more flexible than CNNs that can only

work on grid structured data. To encode the multi-modal

fused feature graph, we adopt an m-layer GCN and propose

a novel update mechanism to update two kinds of nodes in

different manners. The object nodes will generate object-

level features, which can be seen as the first-order features

of the image. It may ruin the representation of the object

node by the information from another object node or re-

lationship node so that each object node is updated without

other information from the neighborhoods. On the contrary,

the relationship-level features are the second-order features

of the image, so the representations of relationship nodes

can be enhanced by its adjacent object nodes. Therefore,

relationship nodes update by aggregating information from

their neighborhoods and object nodes update from them-

selves, as shown by the blue and yellow dashed arrows

in Fig.3. Concretely, given the multi-modal fused feature

graph G = {V, E} (distinguished from the raw visual scene

graph G = {V,E}), the k-th layer of GCN is computed as

hk
oi

= go(h
k−1
oi

), hk
rij

= gr(h
k−1
oi

, hk−1
rij

, hk−1
oj

), (3)

where gr and go are fully-connected layers, followed by a

tanh function. The initial hidden states are the fused fea-

tures as h0
oi

= uoi and h0
rij

= urij .

Finally, the output of an m-layer GCN is an encoded vi-

sual feature graph with two kinds of vertices: hoi , hrij .

3.2. Textual Feature Embedding

3.2.1 Textual Scene Graph Generation

Similar to images, a natural language sentence also de-

scribes many objects and their relationships. Therefore, the

graph structure is also appropriate for representing a sen-

tence. We organize the words of the input sentence into

a textual scene graph (TSG), which includes two kinds of

edges shown in Fig.4. The black arrows indicate word-order

edges, which connect words by the word order in the sen-

tence. The brown arrows are semantic relationship edges,
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Figure 4. The architecture of the textual scene graph encoder. After embedding each word into a vector by the word embedding layer, paths

connected by different edges are encoded separately by word-level bi-GRU and path-level bi-GRU.

which are built from semantic triplets parsed by SPICE [1],

such as “man-hold-baby”. Due to different kinds of edges,

different types of paths are formed in the graph. The path

connected by word-order edges is named as the word-order

path. Paths connected by semantic relationship edges are

called semantic relationship paths.

3.2.2 Textual Scene Graph Encoder

Similar to the processing on the VSG, a textual scene graph

encoder is devised to extract object and relationship fea-

tures from the TSG, which consists of a word embedding

layer, a word-level bi-GRU encoder, and a path-level bi-

GRU encoder illustrated in Fig.4. The word-level bi-GRU

encoder will encode each node along the word-order path,

after which the object-level feature with context is gener-

ated at each hidden state. Due to that the semantic relation-

ship edges break the limitation of the grammatical struc-

ture of the sentence, explicit relationship-level features are

obtained after the path-level bi-GRU encodes along the se-

mantic relationship paths.

Suppose there are Nw words and Np semantic triplets in

a sentence, its TSG will contain Nw nodes, one word-order

path and Np semantic relationship paths. Firstly, each word

wi is embedded into a vector by the word embedding layer

as ewi
= Welwi

, where lwi
is the one-hot vector of wi and

We is the parameter matrix of the embedding layer. We

initialize We using the same word2vec in the VSG encoder,

and then learn We during training end-to-end. Next, two

kinds of paths are encoded separately by different bi-GRUs.

For the word-order path, the word-level bi-GRU operates

from the start word to the end as

−→

hwi
=
−→

GRUw (ewi
,
−→

hwi−1
),

←−

hwi
=
←−

GRUw (ewi
,
←−

hwi+1
), i ∈ [1, Nw],

(4)

where
−→

hwi
and

←−

hwi
are the hidden vectors of wi from two

directions. Finally, the word node feature is gained as

hwi
= (

−→

hwi
+
←−

hwi
)/2, which is regarded as a textual ob-

ject feature. For the Np semantic relationship paths, each of

them is encoded by the path-level bi-GRU as

hpi
=

−→

GRUp (pathi)+
←−

GRUp (pathi)

2
, i ∈ [1, Np] (5)

hpi
is the last hidden state feature of i-th semantic relation-

ship path, which is also a relationship feature of the TSG.

3.3. Similarity Function

To measure the similarity of two encoded graphs in dif-

ferent modalities, we need a similarity function. Since there

are two levels of features in each graph, we match them re-

spectively. Take object features for example, let’s suppose

there are No and Nw object features in the visual and tex-

tual feature graphs, each of which is a D-dimension vector.

Inspired by [11], we define the similarity score of two fea-

ture vectors hi and hj as hT
i hj . We calculate the similarity

scores of all visual and textual object nodes, and then get

a Nw × No score matrix, as shown in Fig.2. We find the

maximum value of each row, which means for every tex-

tual object, the most related visual object among No visual

objects is picked up. At last, we average them as the object-

level score of two graphs. The relationship-level score is

calculated in the same way. The above process can be for-

mulated as

So = (
∑Nw

t=1
max

i∈[1, No]
hT
wt

hoi)/Nw, (6)

Sr = (
∑Np

t=1
max
rij∈R

hT
pt

hrij )/Np. (7)

Finally, given a visual and textual feature graph, the simi-

larity score is defined as S = So + Sr.
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3.4. Loss Function

Triplet loss is commonly used in the image-text retrieval

task, which constrains the similarity score of the matched

image-text pairs larger than the similarity score of the un-

matched ones by a margin, formulated as

L(k, l) =
∑

l̂

max(0,m− Skl + S
kl̂
)

+
∑

k̂

max(0,m− Skl + S
k̂l
).

(8)

m is a margin parameter, image k and sentence l are cor-

responding pairs in a mini-batch, image k and sentence l̂
are non-corresponding pairs, so are image k̂ and sentence

l. Faghri et al. [3] discovered that using the hardest nega-

tive in a mini-batch during training rather than all negatives

samples can boost performance. Therefore, we follow [3]

in this study and define the loss function as

L+(k, l) = max(0,m− Skl + Skl
′ )

+ max(0,m− Skl + Sk
′
l),

(9)

where l
′

= argmaxj 6=l Skj and k
′

= argmaxj 6=k Sjl are

the hardest negatives in the mini-batch.

4. Experiments

In the subsections, we will clarify the datasets and eval-

uation metrics we use for experiments. Then we give the

details on implementation and show the experiment results.

4.1. Datasets and Evaluation Metrics

Flickr30k [36] and MS COCO [19] are two commonly

used datasets in the image-text retrieval task, which con-

tain 31, 783 and 123, 287 images respectively. Both of them

have five text captions for each image. Following [3, 17],

we split Flickr30k as 1, 000 images for validation, 1, 000
images for testing and the rest for training. For MS COCO,

we split 5, 000 images for validation, 5, 000 images for test-

ing and 113, 287 images for training.

To demonstrate the effectiveness of our approach, we

conduct caption retrieval and image retrieval experiments

on Flickr30k and MS COCO datasets. We adopt two uni-

versal metrics, R@k and Medr. R@k is the percentage of

queries whose ground-truth is ranked within top K. Medr is

the median rank of the first retrieved ground-truth.

4.2. Implementation Details

Visual Scene Graph Generation. We use Neural Mo-

tifs [37] and MSDN [18] as visual scene graph generators,

which can recognize 150 categories of objects and 50 cat-

egories of relationships. We pick the top No (No=36) ob-

jects with bounding boxes and Nr (Nr=25) relationships

between them sorted by classification confidence.

Table 1. Evaluation of different variants of our model on Flickr30k

model caption retrieval image retireval

R@1 R@5 R@10 R@1 R@5 R@10

OOM w/o TCxt 52.7 81.8 90.3 44.6 72.2 80.9

OOM 67.6 89.7 94.5 48.6 75.6 83.8

OOM w VRel 65.6 89.5 95.4 50.0 77.4 85.0

OOM w TRel 71.8 91.4 96.1 51.0 79.5 86.8

SGM 71.8 91.7 95.5 53.5 79.6 86.5

Pre-trained Visual Feature Extractor. After parsing

the input image into a scene graph, some objects are de-

tected with bounding boxes. We need to transform these

image regions into real-valued features. We can use the

features extracted by the scene graph generator. However,

most of the recent scene graph generators limit to recognize

150 categories of objects and 50 categories of relationships.

Since text descriptions are rich and open-vocabulary, such

visual features are not expressive enough. Moreover, most

of the recent scene graph generators, including Neural Mo-

tifs [37], use VGG [23] as the backbone. In order to make a

fair comparison with some state-of-the-art approaches that

use Resnet [6], we prefer a feature extractor with ResNet

backbone. Therefore, we take the Faster-RCNN [21] de-

tector, which is trained on the Visual Genome dataset [16]

by 1600 object classes in [2]. We use the 2048-dimension

feature vector after RoI pooling.

Parameters Setting. Our SGM is implemented with Py-

torch platform1. The output dimension of visual and textual

scene graph encoder is 1024. The number of layers of GCN

in visual scene graph encoder is 1. The margin m in loss

function is set to 0.2. We use Adam [13] optimizer with a

mini-batch size of 200 to train our model. The initial learn-

ing rate is 0.0005 for MS COCO and 0.0002 for Flickr30k.

4.3. Ablation Study

To justify the importance of relationships for image-text

retrieval, we evaluate different variants of our proposed

framework in Table 1. SGM is the full model of scene graph

matching that contains relationships in both two modalities,

and OOM is the model only considering objects match-

ing. OOM w VRel and OOM w TRel stand for adding

visual relationships and textual relationships to OOM, re-

spectively. OOM w/o TCxt discards not only the relation-

ships but also textual context, which means words are en-

coded in isolation rather than word-order bi-GRU. The best

results in each column are in bold.

Impact of Relationships. From Table 1, one can find

that all other models outperform OOM w/o TCxt that only

uses isolated elements for matching. It indicates that associ-

ations between objects are essential for image-text retrieval.

Comparing SGM with OOM, the importance of relation-

ships for image-text retrieval is revealed. By adding rela-

tionship information in both modalities, the performance

1Our source codes are available at http://vipl.ict.ac.cn/resources/codes.

1513



Table 2. Comparisons of state-of-the-art models on Flickr30k in cross-modal retrieval.

model caption retrieval image retrieval

R@1 R@5 R@10 Medr R@1 R@5 R@10 Medr

VSE++ [3] 52.9 80.5 87.2 1.0 39.6 70.1 79.5 2.0

GXN [5] 56.8 - 89.6 1.0 41.5 - 80.1 2.0

SCO [8] 55.5 82.0 89.3 - 41.1 70.5 80.1 -

SCAN(t2i) AVG loss [17] 61.8 87.5 93.7 - 45.8 74.4 83.0 -

SCAN(i2t) AVG loss [17] 67.9 89.0 94.4 - 43.9 74.2 82.8 -

Ours (SGM) 71.8 91.7 95.5 1.0 53.5 79.6 86.5 1.0

Table 3. Comparisons of state-of-the-art models on MS COCO. 5k test images are the whole test dataset. 1k test images mean the test

dataset is divided into five 1k subsets, and the results are the average performance on them. Results marked by ’*’ are our implementation

with the published code and data.

model caption retrieval image retrieval

R@1 R@5 R@10 Medr R@1 R@5 R@10 Medr

1k Test Images

VSE++ [3] 64.6 90.0 95.7 1.0 52.0 84.3 92.0 1.0

GXN [5] 68.5 - 97.9 1.0 56.6 - 94.5 1.0

SCO [8] 69.9 92.9 97.5 - 56.7 87.5 94.8 -

SCAN(t2i) AVG loss [17] 70.9 94.5 97.8 1.0 56.4 87.0 93.9 1.0

PVSE [25] 69.2 91.6 96.6 - 55.2 86.5 93.7 -

Ours (SGM) 73.4 93.8 97.8 1.0 57.5 87.3 94.3 1.0

5k Test Images

VSE++ [3] 41.3 71.1 81.2 2.0 30.3 59.4 72.4 4.0

GXN [5] 42.0 - 84.7 2.0 31.7 - 74.6 3.0

SCO [8] 42.8 72.3 83.0 - 33.1 62.9 75.5 -

*SCAN(t2i) AVG loss [17] 43.0 75.3 85.3 2.0 32.1 61.7 74.1 3.0

PVSE [25] 45.2 74.3 84.5 - 32.4 63.0 75.0 -

Ours (SGM) 50.0 79.3 87.9 2.0 35.3 64.9 76.5 3.0

has enjoyed obvious improvements (especially under the

R@1) in both tasks of image retrieval and caption retrieval.

Better Representation for Retrieval. By adding vi-

sual relationships into the model, OOM w VRel outper-

forms OOM in image retrieval, and the same phenomenon

also appears in the comparison between SGM and OOM

w TRel. When considering the impact of textual relation-

ships, similar contrasts are observed. Comparing OOM w

TRel vs. OOM, and SGM vs. OOM w VRel, it shows

that incorporating textual relationships is beneficial to cap-

tion retrieval. Such results suggest that better representa-

tion in one modality can make the samples in the retrieved

database more differentiated and helpful to retrieval task in

this modality. While for retrieval task in another modal-

ity without relationship features, gains can not be guaran-

teed. When we add relationship features in both modali-

ties and match at object-level and relationship-level respec-

tively, the performance of cross-modal retrieval obtains a

large improvement.

4.4. Comparison with Stateoftheart Methods

In this section, we compare our SGM with state-of-the-

art models on Flickr30k and MS COCO. For a fair compar-

ison, all compared models use ResNet for visual feature ex-

traction. We compared our model with VSE++ [3], GXN

[5], SCO [8] and SCAN [17], which covers both global

representation based model and local representation based

models. VSE++ embeds full image and sentence into an

embedding space and matches them. Its contribution is ap-

plying hard negatives mining in training and gaining lots of

improvements. GXN leverages the image-to-text and text-

to-image generative models to learn the locally grounded

features. SCO concentrates on organizing semantic con-

cepts from images into a correct order before matching with

the sentence. SCAN emphasizes attending differentially to

important visual objects and words by an attention mecha-

nism. PVSE [25] addresses the issues with ambiguous in-

stances (e.g. images containing multiple objects) and partial

association by using K embeddings and multiple-instance

learning framework. Whereas, we explore the role of rela-

tionships for image-text retrieval. The results of these meth-

ods come from their published papers or are implemented

with the published code under the same evaluation proto-

col.

As shown in Table 2 and Table 3, our model achieves

new state-of-arts on both datasets. We significantly outper-
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Query Man with snowboard standing next to another wearing a mask

crazy hands

A person touching an elephant in front of a wall.

SGM

OOM

Figure 5. Qualitative top-5 image retrieval results of SGM vs. OOM on MS COCO. Images with red bounding boxes are the ground-truth.

A woman stands next to a horse.

A woman rides on a horse.

A man holds a racket to hit a tennis ball.

A man holds a racket and holds a tennis ball.

Figure 6. Comparison of top-5 retrieved results before and after modifying the relationship words in queries.

form all other methods on Flickr30k and MS COCO 5k test

images by a large margin. On the Flickr30k test dataset,

our model outperforms the best state-of-the-art model by

16.8% relatively in caption retrieval, and 16.18% relatively

in image retrieval based on R@1. On MS COCO 5k test

images, we improve caption retrieval by 10.62% relatively

and image retrieval by 6.65% relatively based on R@1.

On MS COCO 1k test images, while our model deliv-

ers slightly lower scores than others under some metrics,

it yields clearly superior performance against other com-

petitors under the more crucial metric R@1 for retrieval

task. Moreover, all local representation based models sur-

pass the global representation based model (VSE++), which

demonstrates the effectiveness of detailed matching, and the

achievements of our method verify the necessity of consid-

ering relationships in image-text retrieval.

4.5. Qualitative Results

We show some image retrieval examples using SGM and

OOM to reveal the importance of relationships for image-

text retrieval of a complex scene. Given the same text query,

the top-5 image retrieval results on MS COCO by SGM and

OOM are shown in Fig.5. The top-5 retrieved images by

SGM not only contain the right objects but also the right

relationships between them. Images only contain the right

objects won’t be ranked at the top by SGM. However, re-

sults by OOM may overlook relationships information in

queries and images. (More cases are detailed in our supple-

mentary material.)

To prove that our SGM really captures relationships, we

use some text queries to retrieve images from MS COCO

test dataset, and then modify a relationship word in the

query to retrieve again. Two retrieval results are compared

in Fig.6. We can see that after modifying the relationship

words in the text query, the relationships in retrieval results

have changed a lot, but objects have not changed. It demon-

strates our model has indeed captured the relationships so

that we perform well in cross-modal retrieval task with a

complex scenario. (More cases are detailed in our supple-

mentary material.)

5. Conclusion

In this work, we proposed a graph matching based model

for image-text retrieval in a complex scenario that con-

tains various objects. We discover that not only the ob-

jects but also their relationships are important for local de-

tailed image-text matching. To capture both objects and

relationships in the images and text, we have represented

image and text into the visual scene graph and the textual

scene graph, respectively. Then we design the Scene Graph

Matching (SGM) model to extract the object-level features

and relationship-level features from the graphs by two graph

encoders for image-text matching. Due to explicitly model-

ing relationship information, our method outperforms state-

of-the-art methods in image-text retrieval experiments on

both Flickr30k and MS COCO. What’s more, qualitative

experiments show that our approach can truly capture the

relationships and is helpful in the image-text retrieval task.
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